	OYOLA CO	LLEGE (A	AUTONOM	OUS), CH	ENNAI – 600 034							
(10 g 55)	M.\$	Sc. DEGRE	E EXAMINAT	rion - sta	TISTICS							
₹_=₹	THIRD SEMESTER – NOVEMBER 2013											
LUCCAT LUK VESTER	ST 3	8815/3811	– MULTIVA	RIATE ANA	ALYSIS							
	/11/2013)0 - 12:00	Dept. N	lo.		Max. : 100 Marks							
Answer ALL t	he following que	estions	<u>SECTION – A</u>	<u>\</u>	(10 x 2 = 20 marks)							
	<u> </u>				(
	n 'Confirmatory											
	Correlation matr	rix of a rando	m vector.									
3. Explair 4 Give ar	n p-p plots. n example to sho	w that margir	nal normality do	es not assure i	ioint normality							
5. Define	partial correlation				in the case of multivariate							
	distribution.	notring if the	airan walwar ara	105 145 0	15 and 0 15 find the percentage							
	ance explained by		-		45 and 0.15, find the percentage							
7. Briefly	explain the obje	ctive of Facto	or Analysis.									
	ny two distance r n any one way o				ninent function							
	the context for											
1			2									
Answer any FI	VE questions		<u>SECTION – E</u>	<u>}</u>	$(5 \times 8 = 40 \text{ marks})$							
	(X_1, X_2) have the p	omf given by th	ne following table	e:	(),							
	X ₂	0 1										
	X_1	0.08 0.22	-									
	-1 0	0.08 0.22 0.18 0.12 0.30 0.10										
Find the	e Mean Vector, Va	r-Cov Matrix,	Correlation Matr	rix of X .								
12. Describ	be scatter plot en	hancement w	ith regression lin	nes.								
13. If X =	$\begin{bmatrix} X^{(1)} \\ X^{(2)} \end{bmatrix} \sim \mathrm{N}_{\mathrm{p}} (\mu, \Sigma)$	E) and μ and Σ	E are accordingl	y partitioned a	as $\begin{bmatrix} \mu^{(1)} \\ \mu^{(2)} \end{bmatrix}$ and $\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$,							
	the conditional d the moment gen											
	ndom vector, sta	-	-		efinition and derive the same tion of a quadratic form on the							
-	-		l agglomerative	methods of c	lustering. Explain any two							
ппкаде	s in this context.				(P.T.O)							

- 17. Present the motivation and derive the Fisher's Discriminant Function for discriminating between two populations.
- 18. Derive the Hotelling's T² statistic for testing hypothesis concerning the mean vector of a multivariate normal population.

$\underline{SECTION - C}$

 $(2 \times 20 = 40)$

<u>Answer any TWO questions</u> marks)

- 19. (a) Give the motivation for multivariate normal distribution from univariate normal distribution and develop its p.d.f.
 (b) Derive the MLEs of N_p (μ,Σ) (10 + 10)
- 20. (a) Discuss the Principal Factor Method of Estimation for the Parameters of the Factor model. (b) Present the Regression Method of estimating the factor scores. (10 + 10)
- 21. (a) Explaining the notations, enlist any four similarity measures for pairs of items when variables are binary and state their rationale.

(b)Apply the single linkage process for clustering six objects whose distance matrix is given below (Dendrogram not required):

	1	2	3	4	5	6
1	$\left\lceil 0 \right\rceil$					-
2	2	0				
3	2	1	0			
4	7	5	6	0		
5	6	4	5	5	0	
6	6	6	6	9	7	0

22. (a) Define Multiple Correlation Coefficient and derive an expression for it in the case of multivariate normal distribution.

(b) Obtain the optimal classification rules for two populations when the objective is to minimize cost of misclassification. (12+8)
